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The method of apparent masses is utilized to compute the initial lift and drag of an 
airfoil that starts impulsively from rest. Analytical solutions are obtained for inviscid 
incompressible flow past a slightly cambered airfoil a t  a small angle of attack. For a 
Joukowski airfoil with a cusped trailing edge, it is found that increasing camber or 
angle of attack will cause increases in both initial lift and drag, whereas increasing 
thickness will result in an opposite effect. Effects of trailing-edge angle are examined 
by considering the symmetric KArmAn-Trefftz airfoil. The result shows that both lift 
and drag vanish at the initial instant if the airfoil has a finite trailing-edge angle. 

1. Introduction 
When an airfoil at an angle of attack starts impulsively from rest, a circulation is 

generated around the airfoil and a vortex sheet is shed in the wake. The strength of 
the vortex sheet is determined by requiring that the total circulation of the fluid 
system be vanishing, and in the meantime the Kutta condition be satisfied a t  the 
trailing edge a t  all times. The problem of a flat-plate airfoil has been solved by 
Wagner (1925) and by KArmAn & Sears (1938), based upon the assumption of an 
undistorted flat wake sheet. Their results show that the initial lift of the airfoil is one- 
half of the final steady-state value. 

Considering airfoils of finite thickness and allowing wake deformations, Giesing 
(1968) developed a numerical method for computing the lift on an airfoil of arbitrary 
shape executing arbitrary unsteady motions. Because of the special computational 
procedures involving finite time increments, the lift a t  the initial instant could not be 
calculated. However, from the lift versus time plots shown in figure 1, Giesing's curve 
for a 25.5 yo thick symmetric Joukowski airfoil (of vanishing trailing-edge angle) and 
that for an 8.4 yo thick symmetric von Mises airfoil (of finite trailing-edge angle) 
indicate that their lifts seem to reach finite but different initial values as time 
approaches zero. Basu & Hancock (1978), on the other hand, using much smaller 
time steps during the initial period and further requiring zero loading across the wake 
vortex sheet in addition to the Kutta condition on the unsteady airfoil, found that the 
initial lift of the 8-4 yo thick von Mises airfoil tended to zero, as shown in the same 
figure. 

To explain the differences among various solutions that have been displayed in 
figure 1,  a study is needed to examine especially the effects of thickness and trailing- 
edge angle on the unsteady performance of an airfoil. Numerical methods are inevitable 



394 G-Y. Chow and M-K.  Huang 

I 
0 0.4 0.8 1-2 1.6 2.0 

FIGURE 1. Lift coefficient of impulsively started symmetric airfoils a t  a small angle of attack. 
Results based upon present method: 0, flat plate; x , 26.5% thick Joukowski airfoil; 0 ,  
Khrrnitn-Trefftz airfoil of finite trailing-cdge angle. -, flat plate (Wagner 1925) ; - - -, 8.4 yo 
vonMises (Giesing 1908); ---, 8.4% von Mises (Basu &Hancock 1978); -’.-, 25.5% Joukowski 
(Giesing 1968). 

Utlc 

in such a study. However, if only the solution at  the initial instant is to be sought, it 
will be shown that the results can be expressed in closed form by using the method of 
apparent masses, which was originated by Jones (1939) for computing the unsteady 
lift of a wing of finite aspect ratio. 

To apply the method t,o the two-dimensional case, it is assumed, for the initial period 
immediately following the impulsive motion of an airfoil, that the wake vortex sheet 
shed from the trailing edge moves with the airfoil as if it  were an impermeable extension 
of the airfoil, while keeping a vanishing total circulation in the flow. The apparent 
masses of the airfoil-wake combination can be derived as functions of time after the 
rate of elongation of the wake length is determined from the vortex-shedding velocity. 
Momenta of the apparent masses are then computed, whose time derivatives should 
give the unsteady forces exerted on the airfoil. However, a t  the sharp-turning surfaces 
of the airfoil where the velocity is infinite (for example a t  the leading edge of a flat 
plate and a t  the tip of the shedding vortex sheet), there exist suctional forces that must 
also be included in the computation. Since our analysis is restricted to slightly 
cambered airfoils moving a t  small angles of attack, these singular forces, which can 
theoretically be evaluated by taking limiting processes, have higher-order small 
effects on the lift, and can therefore be ignored. Thus we approximate the lift as the 
force perpendicular to the chord instead of that perpendicular to the airfoil motion. 
On the other hand, the drag, whose magnitude is one order smaller than that of the lift, 
cannot be computed in this manner without including the singular forces; it is evaluated 
alternatively by balancing the unsteady energy that is also expressed in terms of the 
apparent masses. 

The procedure is illustrated in $ 2  to compute the starting lift and drag of a flat-plate 
airfoil moving suddenly from rest. The result agrees with that of Wagner’s analysis at  
the initial instant. The analysis is then extended to airfoils of finite thickness. Con- 
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sidered respectively in $93  and 4 are the Joukowski and K&rm&n-Trefftz airfoils 
having respectively vanishing and finite trailing-edge angles. Our results are compared 
with the initial lift and drag extrapolated from the curves obtained by Giesing and 
Basu & Hancock, and an explanation of the discrepancy between their numerical 
solutions is attempted. 

2. The flat-plate airfoil 
The problem in consideration is sketched in figure 2, showing a thin flat-plate airfoil, 

of chord c and at  an angle of attack a, that has started impulsively from rest with a 
constant velocity U .  Since the airfoil is moving away from its wake at the speed 
U cos a, we assume that the length of the wake vortex sheet, being shed tangentially 
from the trailing edge, increases at  a fixed rate equal to this speed. This assumption, 
which automatically fulfils the Kutta condition, is justified mathematically in 3 3. 
Within a short time t after the impulsive start, the wake has a negligibly small defor- 
mation, so that it is treated as a short extension of the flat plate. The instantaneous 
flow is thus equivalent to that generated by moving a rigid plate of length c + Ut cos a 
with a normal velocity U sin a. 

Let K be the kinetic energy per unit depth of the fluid caused by the motion of a two- 
dimensional body. It may be expressed as a function of velocities u and v of the body 
that are respectively in the x- and y-directions: 

K = ~m,,u2+mm,,uv+~m22~2, (1)  

where mij are the apparent masses associated with the fluid motion, and the relation 
mZ1 = m12 has been used. For the elongated flat plate consisting of the airfoil and wake 
shown in figure 1, the apparent masses are (Nielsen 1960, p. 371), with p denoting the 
fluid density, 

in terms of which the fluid momentum in the y-direction has the expression 

m,, = 0, mI2 = 0, mZ2 = &p(c + Ut cosa)2, (2) 

(3) Mu = - mZ2 U sin a. 

The time rate of change of momentum gives the force exerted on the fluid. This 
force can only be exerted by the solid surface of the airfoil, so that the reaction, or the 
lift per unit span of the airfoil, is computed from 
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As mentioned in $1, the actual lift is perpendicular to U ,  so that the preceding 
equation holds only approximately. The lift coefficient of the airfoil during the 
starting period is, from (2)-(4), 

By letting t approach zero, we obtain the initial lift coefficient 

where 

is the steady-state lift coefficient of the flat-plate airfoil, which is usually written as 
2na for small angles of attack. The result represented by (6) agrees exactly with 
Wagner’s solution. 

The drag force is computed from the energy consideration. For the present flow, 

(8) 
(1) becomes A’ = &mZ2( Usin a)2. 

Conservation of energy requires that the work done by the drag D per unit time be 
equal to the rate a t  which the fluid kinetic energy is increased. Thus we have 

1 ah’ D=-- 
U d t ’  (9) 

The direction of the drag is opposite to that of U .  The drag coefficient is defined in the 
same way as that shown in ( 5 )  for the lift coefficient. After substituting from (2)) (8), 
and (9) and taking the limit, an expression is obtained for the initial drag coefficient, 

C,, = $n- sin2 a cos a. (10) 
This agrees again with the result & m 2 ,  deduced from Wagner’s function for small a 
(Garrick 1957, p. 705), as indicated in figure 3. 

We have demonstrated that the method of apparent masses predicts correctly the 
initial lift and drag of a flat plate. This method is relatively simple in that the tedious 
procedure of determining the strengths of airfoil- and wake-vortex sheets and that of 
evaluating and integrating the unsteady pressure distribution around the airfoil are 
avoided. The method is now applied to study the initial behaviour of airfoils of finite 
thickness. 

3. The Joukowski airfoil 
Sketched in the physical (x,y)-plane of figure 4 ( a )  is an impulsively started 

Joukowski airfoil whose chord is slightly longer than 4cl, c1 being a characteristic 
length. The airfoil generally has a camber and its cusped trailing edge makes an angle 
2p with the x-axis. Since the trailing-edge angle vanishes, the appropriate Kutta 
condition is that the fluid velocity ?$ at  the trailing edge be finite and be tangent to the 
local airfoil surface. At an instant t shortly after the impulsive start, a vortex sheet of 
length A( = f i t )  is shed in the wake, making an angle 2/3 with the x-axis. In  analogy to 
the flat-plate problem, the initial lift and drag are determined from the apparent 
masses of ;I body consisting of both the airfoil and the wake. 

According to a general method described by Nielsen (1960), the apparent masses of 
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ut/c 
FIGURE 3. Drag coefficient of impulsively started symmetric airfoils at a small angle of attack. 
Results based upon present method: 0, flat plate; x , 25.5% thick Joukowski airfoil; 0, 
K&rm&n-Trefftz airfoil of finite trailing-edge angle. --, flat plate (Garrick 1957); - - -, 8.4% 
von Mises (Basu & Hancock 1978). 
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FIGURE 4. Successive transformations of a Joukowski airfoil and its wake into a circle. 
(a )  ( z  = z+iy)-plane; ( b )  (2’ = z’+iy’)- and (2” = z”+iy”)-planes; ( c )  I‘ = (e+if)-plane; 
(d )  (1; = (+iv)-plane. 

any two-dimensional body are immediately obtained if the body contour can be mapped 
into a circle. Let us first map the airfoil into a circle of radius a in the $-plane as shown 
in figure 4 ( b )  through the Joukowski transformation 

cf 2 = X I + -  

2’ ’ 



398 C-Y.  Chow and M-K.  Huang 

in which z = x + iy and z‘ = x’ + iy’. The trailing edge of the airfoil is mapped into the 
point T at 2’ = cl, and the wake vortex sheet is mapped into a radial line segment 
passing through T if the length of the vortex sheet is infinitesimal. The airfoil geometry 
is generated by specifying the two shape parameters 6 and ,a defined in figure 4 ( b ) .  The 
radius of the circle 

a = ( c ~ + 6 ~ - 2 c 1 6 c o s p ) l  (12) 

determines the chord, and the angle 
6 sin ,a p = arctan 

1 -6cosp 

determines the orientation of the trailing edge. 
The flow around the airfoil can be obtained by transforming that around the circle 

in the $-plane, which consists of a uniform flow U a t  an angle of attack x,  a doublet of 
strength Ua2 at the centre of the circle, a bound vortex of circulation I’ about the 
circle, and a flow induced by the wake vortex sheet. The Kutta condition when applied 
in the 2’-plane requires that the resultant flow speed be zero a t  the point T. It can be 
proved in a straightforward manner that any point vortex on the wake vortex sheet 
and its image inside the circle will modify the magnitude of I7 in order to keep T a 
stagnation point, but they will not change either the magnitude or the orientation of 
the velocity Vt at the airfoil trailing edge. Thus, as long as the vortex sheet is on the 
radial line through T, vortices are shed at the velocity 

& = u%os(x+p) 
U 

in a direction that makes a clockwise angle of 2/3 with the x-axis. The classical result of 
(14) can be found, for example, in KiLrm&n & Burgers (1943). 

The flat plate is a special case of the Joukowski airfoil generated by letting 6 = 0. 
This gives a = c, and /3 = 0, so that 6 = U cos a ,  which justifies the vortex-shedding 
velocity assumed in 3 2 for the flat plate based on an intuitive argument. 

From (14), the length of the vortex sheet trailing behind the Joukowski airfoil is 
calculated: 

(15) 
C 

U 
A = Utdcos(a+/3). 

To find the length A, of the sheet in the 2’-plane, the transformation (1 1) in the neigh- 
bourhood of the trailing edge is approximated by 

z r  - c1 2 [ ( x  - 2CJ Cl]k 

It maps the tip of thevortex sheet at  z = 2c, + Ae-i2flinto a point at  z’ = c1 -t- (clA)* e-ifl, 
so that 

A, = (c1A)4. 

The co-ordinate system is shifted to the centre of 
rotated through an angle /3, as shown in figure 4 ( b ) ,  

2“ = (2‘ - 6eiP) ei8. 

A further transformation 

(16) 

the circle and in the meantime is 
by the transformation 

(17) 

a2 <’ = Z”+? 
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maps the circle into a flat plate of length 4a and the vortex sheet into an extended line 
segment of length A, (see figure 4c). The size of the wake in the c-pbne can be deter- 
mined by considering the approximation of (18) in the neighbourhood of the trailing 
edge 

Mapping of the tip of the vortex sheet yields 4, = A y a ,  or, from (16), 

c 
4, = AA. 

a 

The combination of the horizontal plate and wake in the g'-plane is finally mappedinto 
a circle of radius R in the c-plane of figure 4 (d )  by the transformation 

R2 q-ga, = y+- c t  
where R = a+&A,.  (21) 

The successive transformations (ll),  (17), (18) and (20) can be summarized in the 
form of a single transtormation 

in which, in particular, 
a, = cl+  (R2 - a2) e-i2j. 

Coefficients other than a, are not needed in the computation for apparent masses. The 
derivation of (22) and (23) is given in appendix A. 

The apparent masses are functions of R, a, and the cross-sectional area S of the 
airfoil. According t o  Nielsen (1960), 

(24 a)  

m12 = - 2npf(a,), (24b) 

8 
m,, = 2np R2 - - - I 2n 

( 2 4 4  

in which 9 and 9 indicate respectively the real and imaginary parts. With A/a  < 1 
in (19), expressions (21) and (23) can be approximated by 

R 2 ~ a 2 + $ c l A ,  a,? c2,$&1Ae-i2~. 

Thus for the Joukowski airfoil with a very short wake, the apparent masses are 

m,, = MI, + npclA( 1 - cos 2p), 

m,, = npc, A sin 2,8, 

m22 = M22 + npc14( 1 + cos 2p), 

( 2 5 4  

(25b) 

(25c)  

where 

are the apparent masses of the airfoil without a wake. 
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The momentum and kinetic energy of the flow shown in figure 4(a) are respectively 

Mu = -m12Ucosa-m2,Usina, (26) 

(27) 

Substituting (25)  into (26) and (27), with A expressed as a function of t  by (15)) and 
then performing time differentiations according to (4) and (9), we obtain the starting 
lift and drag after letting t -+ 0. They have the following forms: 

K = +m,,( U cos a)2+ m12 U 2  sin a cos a + $m,2( U sin a)$. 

(28) 
1 

Lo = - vcf p U 2  cos ,8 sin 2(a + p), 
U 

(29) 
1 

2a 
Do = - m ; p  U2 sin (a + p) sin 2(u + ,5). 

Effects of airfoil geometry on initial lift and drag are examined separately. The 
right-hand sides of (28) and (29) indicate that airfoil camber and angle of attack have 
the same effect of increasing both the initial lift and drag. The influence of thickness 
can be found by considering the approximated relationship for thin airfoils of small 
camber (Pope 1951, p. 97) that 

a d - z l + 0 . 7 7 -  
C1 C )  

where d/c is the maximum-thickness to chord ratio. Uupon substitution from (30), (28) 
and (29) show that both lift and drag become smaller a t  the initial instant for a thicker 
airfoil. 

The steady-state lift of the Joukowski airfoil is (K&rmSn & Burgers 1943) 

Ls = 4napU2sin (a+/?), 
whose ratio to (28) yields 

cos p cos (a + p). c,,=L, 1 C 1 2  

c,, L, = 2 (2) 
This equation enables us to determine the missing initial value of the lift-ratio versus 
time curve, obtained numerically by Giesing (1968) for the 25.5 yo thick symmetrical 
Joukowski airfoil, plotted in figure 1. Since the approximate expression (30) holds only 
for thin airfoils, the ratio a/cl is determined alternatively by assigning different values 
to 6 in (12) with ,u = v and then observing the corresponding airfoil shapes. The value 
a/cl = 1-25 is thus obtained for this particular airfoil. For ,8 = 0 and for a small angle 
of attack, (32) gives C,,/C,, = 0.32, which is represented by a cross on the vertical 
axis of figure 1. It is interesting to note that an extension of Giesing’s curve for that 
airfoil would go right through this crossed point, just like the case of a flat plate in 
which the Wagner’s curve passes through the circled point obtained by using the 
method of apparent masses. 

For a flat plate, cl/a becomes unity, and (32) reduces to (6) within the approximation 
of small angles. 

Non-dimensionalizing (29) based upon a chord of length c cz 4c1, we obtain an 
expression for the initial drag coefficient that 
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(C) 

FIGURE 5. Successive transformations of a K&rmh-Trefftz airfoil and its wake into 
(a )  (z  = z+iy)-plane; (6) (2‘ = z’+iy’)-plane; (c) (2” = z”+iy”)-plane; ( d )  (5‘ = 
plane; ( e )  ( 5  = g+iq)-plane. 

a circle. 
i?+i?l’)- 

which reduces to (10) for the flat-plate airfoil. This formula gives CDo/a2 = 1.256 for 
the 25.5 yo thick symmetrical Joukowski airfoil moving at  a small angle of attack. 
The result is represented by a cross in figure 3. 

If we let the circle shown in figure 4(b)  be centred on the y’-axis so that cl/a = cosp, 
the resulting equations (28) and (29) become the expressions for the starting lift and 
drag of an infinitely thin airfoil having the shape of a circular arc. 

4. The K&mh-Trefftz airfoil 
We now consider an airfoil that, unlike the cusped Joukowski airfoil, has a finite 

trailing-edge angle. Because of its well-known conformal-mapping properties, the 
uncambered K&rm&n-Trefftz airfoil is chosen as the object of our analyses. Such an 
airfoil, having a trailing-edge angle 7 ,  is sketched in the physical z-plane of figure 5 (a). 
It is mapped into a circle in the 2’-plane as shown in figure 5 ( b )  through the trans- 
formation (K&rm&n & Burgers 1943, chap. 2) 

where K = 2-7/n .  
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The circle passes through the point z‘ = c1 with its centre on the negative 2’-axis at  a 
distance Gfrom the origin. The radius a( = c, + 8) controls the shape of the airfoil, whose 
trailing edge is always a t  z = KC, .  The Joukowski transformation (1 1) is a special case 
of (34) with r = 0. 

Suppose the airfoil has a short wake of length A making an angle $with the x-axis. 
The transformation (34) maps the wake into a straight line of length Al that makes an 
angle pn with the negative y’-axis, where 

1IK 
A, = [ ( 2 ~ , ) ~ - 1 $ ]  , 

0 
pn = *?T+;. 

(35 )  

(36) 

Again, in order to compute the apparent masses, transformations must be found that 
successively map the airfoil and its wake into a circle. They are first transformed from 
the 2’-plane into the 2‘’-planc according to the relationship 

so that the airfoil maps into the entire y”-axis, and the wake becomes a line segment of 
length A2 as shown in figure 5 ( c ) .  This transformation consequently maps the entire 
region a t  infinity into the point E on the negative x”-axis. It can easily be shown that 

2 
A - (5) A,. 

2 -  2a 

The airfoil-wake combination is further mapped into the vertical axis of the 5‘-plane 
in figure 5 ( d )  by the transformation 

2’’ = (5’ - iA ,~l - f i )@ (6‘ + iA2~-P)1-P, (39) 

in which lu v=- 
1 - p a  

For a very small A2, (39) causes the position of E to change slightly from - c: f 2a in the 
2”-plane to - c y 2 a  + e in the q-plane, where B = Fr + i ~ ,  is a small complex perturbation 
quantity with 

(41) 
aA2 

Er. = ,u(I-,uu)T~(v’-”+Y-P)’, 
C 1  

€1 = A~[,uv’-’ - ( 1  -,u) ~ f i ] ,  (42 )  

Finally, the airfoil and its wake are mapped as shown in figure 5 ( e )  into a circle of 
which are obtained after neglecting terms of order of A3, or higher. 

radius 

and the point E is mapped back to infinity in the [-plane by the transformation 
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With details given in appendix B, we combine transformations (34), (37)) (39) and 
(44) into a compact form 

in which 

a1 = &c2 - 1 ) c? + 8 p( 1 - p) ( vl-p + V - P ) ~  A:. (48) 

We can now proceed to compute the apparent masses for the airfoil-wake combi- 
nation. It turns out for a symmetric airfoil that mI2 vanishes and m,, is not influenced 
by the wake and therefore is not a function of time. Because dz/d[ .I. I as 6 -+ co, the 
expression (24c) for m22 is modified to read 

(3 

It gives, upon substitution from (43), (45), and (48) and then using (35) and (38), 

( 2c,)"-l A 2 / K  

] , 
m22 = jl2, + 2npvl-2P [ 

(51) 
Jizz= 2np u 2 - - + g ( K . - t ) c : )  S 

( 27r 
in which 

is the expression for the airfoil without a wake. Note that a, 8, and c1 defined in 
figure 5 for the Kkrmkn-Trefftz airfoil are different from those defined in figure 4 for 
the Joukowski airfoil. 

To check the correctness of the above analyses, let us consider a special case in which 
r = 0 (vanishing trailing-edge angle) and r9 = 0 (horizontal wake), so that K = 2, p = Q, 
and v = 1. With these values, (50) and (51) correspond respectively to (25c) and (25e) ,  
after letting p = 0 for an uncambered Joukowski airfoil. 

The next task is to find an expression for the wake length A in (50) as a function of 
time. According to our model, the airfoil and its initial wake move together like a rigid 
body, with the circulation about the airfoil equal but opposite to that about the wake 
vortex sheet. The KArm&n-Trefftz airfoil, unlike the flat plate or the Joukowski airfoil, 
has a vanishing velocity at  the trailing edge so that its vortex-shedding velocity cannot 
be computed in the previous manner. On the other hand, at the free end of the wake 
vortex sheet, which is designated A in figure 5 (a) ,  the velocity becomes unbounded. 
We consider the rate at which the vortex sheet elongates as the average of the velocities 
at  two points that are immediately above and below the sheet at  point A .  With 
details shown in appendix C, we obtain 
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with 

Integration of (52 )  yields the desired expression for the wake length that 

(53) 

Let us take a closer look a t  the function f .  The right-hand side of ( 5 3 )  is determined 
by the geometry of the airfoil and the angle of attack; except for the last group, which 
is determined instead by v and ,a. Since v is related to ,u through (40), and p itself is a 
function of 8 as shown by (36), that group in ( 5 3 )  describes the influence of the orien- 
tation of the wake vortex sheet. More explicitly, upon substituting v from (40) and K 

from (34a), (53) and (36) can respectively be rewritten as 

Keeping airfoil geometry and angle of attack the same, these relations show that f has 
a maximum at, and is symmetric about, 0 = 0, and that f decreases continuously 
toward zero as the magnitude of 6 increases toward its maximum value of n - t ~ .  
See figure 5 (a)  for a geometric interpretation of the preceding statement. 

Fluid kinetic energy is obtained after substituting (54) into (50) and then into (27), 
noting that m12 = 0 and m,, is a constant. I ts  unsteady part is found to be proportional 
to  f raised to a constant power, so that, from the property off, the kinetic energy has 
a maximum a t  6 = 0 and decreases with increasing magnitude of 0. However, the wake- 
orientation angle is restricted by the Kutta condition. For 181 < $7 the flow a t  the 
trailing edge turns through an angle that is deflected into the oncoming flow on either 
the upper or the lower surface of the airfoil; both points B and D in figure 5(a)  are 
therefore stagnation points. For 0 > &r, the flow on the lower surface turns through an 
angle deflecting away from the original flow direction, causing an infinite velocity at 
point D, in violation of the Kutta condition. Similarly the Kutta condition is not 
satisfied a t  point B if 6 < - $7. When 6 = QT, the wake vortex sheet is tangent to the 
lower surface of the airfoil a t  the trailing edge, so that the velocity a t  D is finite and 
that a t  B vanishes. The situation is reversed if 0 = - $7. It is thus concluded bhat the 
possible values of 8 are those within the range - QT < 0 < $7. 

I n  order to narrow down that range further, we argue that the actual flow must be 
the one that causes least kinetic energy in the fluid. This requirement results in two 
possible values, 6 = k $r, from the result of the kinetic-energy analysis. The physical 
difference between these two cases is that when 0 = &r the shed vorticity is counter- 
clockwise, whereas when 8 = - $7 it is clockwise and is therefore in the same direction 
as that of the circulation around the airfoil. These two cases have been sketched by 
Basu & Hancock (1978) in their figure 4. The latter case is eliminated on the ground 
that the total circulation around a path enclosing both the airfoil and wake must be 
zero. The final result for the orientation of shed vortex sheet that 0 = $7 agrges with 
that obtained by Basu & Hancock demanding a zero pressure difference on the upper 
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Ut 
d 

0 
10-6 
10-6 

- 

10-4 
10- 3 

10-2 

10-1 

7/7t = 0.05 

0 
0.258 
0.290 
0.325 
0.365 
0.410 
0.460 

7/71 = 0.1 7/n = 0.2 

0 0 
0-134 0.036 
0.168 0.057 
0.2 12 0.090 
0.267 0.142 
0.336 0.225 
0.423 0.357 

TABLE 1. Time variation of lift coefficient of Kkmk-Trefftz airfoils of various 
trailing-edge angles during the early stage of an impulsive motion 

and lower surfaces a t  the trailing edge, and also with that obtained by Giesing (1969) 
requiring a smooth flow there. Substitution of this particular value of 8 into (56) yields 

1 p=- 
2--T/?r’ 

which simplifies (40) to 1 
y = -  

1 -T/ .  

(57) 

We are now ready to compute the unsteady lift. Substituting (54) into (50) and then 
into (26), and then performing differentiation according to (4), we obtain 

The steady lift of the symmetric Kkrmkn-Trefftz airfoil is, as shown in KBrm6.n 8: 

(60) 
Burgers (1943), 

After use of (34a), (57), and (58), the ratio of (59) and (60) gives 

L, = 4npU2u sin a. 

The airfoil becomes a symmetric Joukowski airfoil when the trailing-edge angle r 
vanishes. In  such a case (61) reduces to (32) with /3 = 0, so that the initial lift is finite. 
On the other hand, the initial lift vanishes for any finite value of r, as represented by a 
point a t  the origin in figure 1. 

For small angles of attack we let cos a z 1 in (61) and examine the effect of trailing- 
edge angle by computing the time variation of (CL/CLs)/(cJa)2 for three non-vanishing 
values of r .  The result displayed in table 1 shows that lift increases very rapidly at  a 
rate which decreases with increasing r .  Since a thicker airfoil has a smaller c l /u  ratio, 
the pick-up rate is therefore dower for such an airfoil. 

A direct comparison of our analytical result for the Khmkn-Trefftz airfoil with the 
iumerical results, plotted in figure 1, obtained by Giesing and Basu & Hancock for an 
:-4% thick von Mises airfoil, is not possible. However, the lift curve by Basu & 
Iancock behaves in the same way as that predicted by our theory. The large dis- 
repancy between this and Giesing’s curve, which seems to approach a non-vanishing 
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value as t 3 0, is most likely caused by the relatively large time steps used in Giesing’s 
numerical procedure. 

The unsteady drag, computed by using (8) and (91, is proportional to dm2,/dt and 
thus is proportional to the expression contained in the square brackets on the right- 
hand side of (61). The result that the initial drag vanishes for an airfoil of finite trailing- 
edge angle is represented in figure 3. Basu & Hancock’s drag curve for the von Mises 
airfoil seems to conform with our theoretical prediction. 

5. Conclusion 
We have demonstrated that analytical solutions for the starting performance can be 

obtained for various airfoils, as long as the airfoil and its short wake can be mapped 
into a circle. Our result for the cusped Joukowski airfoil reveals that increasing camber 
or angle of attack will raise the initial lift and drag, whereas increasing thickness will 
cause an opposite effect. The influence of trailing-edge angle is studied by considering 
the symmetrical K&rm&n-Trefftz airfoil. It is found that any finite trailing-edge angle 
causes both lift and drag to decrease to zero a t  the starting instant of the impulsive 
motion. The rate of increase of initial lift decreases with increasing either trailing-edge 
angle or thickness. In other words, a thicker airfoil or an airfoil with a larger trailing- 
edge angle exhibits a higher resistance to lift increase. 

Our analysis holds only for a very short period immediately after the motion is 
started, because the assumption of a straight wake soon becomes invalid when the 
free end of the shed vortex sheet starts to roll into a spiral. 

The analysis can be extended to accommodate large a and p angles by including 
suctional forces exerted on all sharp corners at  which the velocity becomesinfinite. With 
additional mathematical manipulations, a more general analysis can be carried out for 
a cambered K&rm&n-Trefftz airfoil. However, we expect that the effects of camber 
are analogous to those found for the cambered Joukowski airfoil. 

This work was supported by the Air Force Office of Scientific Research under Grant 
No. AFOSR 81-0037, administered by Michael S. Francis. 

Appendix A. Derivation of (22) and (23) 
Solving (17)  for xf and substituting the result into ( 1 1 )  yields 

for small S/z”. Now from (18), and then using (20), 

a2 
= 5‘-- + ... 

gl 

R2 - a2 
5 

= 5+4A2+- +.... 
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Substitution of X" from (A 2 )  into (A 1)  gives 

in which a, has the expression described by (23). 

Appendix B. Derivation of (45) and (48) 

(39) to give 
5' is first expressed in terms of y by using (44). The expression is then substituted into 

in which P and Q are defined respectively in (46) and (47). Since z" has the value of 
- 4 / 2 a  as g + co (see figure 5 c ) ,  we have 

so that (B 1) becomes 

The transformation (34) can be written in the form of an infinite series (K&rm&n & 
Burgers 1943, p. 74) 

(B 3) 
2 = z ' + & ( K 2 - q T + . . . ,  4 

in which z' is expremed as a function of Z" by using (37) : 

z' = 4 - - ( U + G ) .  
2'' + c2,/2a (B 4) 

After substituting (B 2) into (B 4) and then into (B 3 f ,  its right-hand side becomes a 
power series in C, as shown in (45). Only the coefficient a, in this series affects the 
apparent masses. It has the form 

a, = ~ ( ~ 2 - 1 ) c ~ + p ( l - - , u )  

Substituting P and Q from (46) and (47), in which 6 is defined by (41) and (42), and then 
expanding the right-hand side of (B 5 )  as an infinite series in A,, we obtain (48) by 
retaining terms up to O(Ai). 
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Appendix C. Derivation of (52) and (53) 
Let us use subscripts u and P to denote, respectively, the conditions at points 

immediately above and below the wake vortex sheet at the tip A .  If V represents the 
speed tangent to the sheet and W represents the complex potential of the flow, the 
rate a t  which the vortex sheet elongates can be computed, 

Expansion about A gives 

in which (dz/dLJ, can be shown to be zero. 
Referring to figure 5 ( e ) ,  we let w be the angle between the &axis and the radius of 

the circle passing through A .  It is assumed that, after being mapped into the [-plane, 
those two points above and below the vortex sheet become points on the opposite sides 
of that radius, so that 

(C 6) 

(C 7)  

Cu - CA = e i (w+h) ,  

&-cA = Aei(+n) 

- - - ei(of&n), 

where h is an infinitesimal distance. Substituting (C 2-C 7) into (C l), we obtain 

It is not difficult to show, by virtue of the fact that point A is in the close vicinity of 
the airfoil trailing edge, that 

(C 9) = ego y2P-1 [( 2c1)2(1-K) K K + ~ A K - ~ ] ~ / K .  ($), 
The complex potential of the flow about the circle shown in figure 5 ( e )  of vanishing 

circulation is 
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from which we obtain 

after using the approximations that (dx/dfl)c+, N 1 and R -N a, andthe fact that point A 
is at an infinitesimal distance above the 6-axis. Substitution of (C 9) and (C 10) into 
(C 8) yields (52) and (53). 
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